Welcome to the NavList Message Boards.


A Community Devoted to the Preservation and Practice of Celestial Navigation and Other Methods of Traditional Wayfinding

Compose Your Message

Add Images & Files
    Re: UTM to lat/lon formulas
    From: Herbert Prinz
    Date: 2003 Dec 13, 16:30 -0500

    George Huxtable wrote:
    > My own copy appears to be first-edition. At least, there's no mention of
    > any new edition or revision, just a copyright date of 1992. And yet, there
    > seems to be a discordance with Herbert's copy.
    > There may be a clue on page iv, facing the
    > contents page, which has a row of numbers, decreasing from 10 to 2, at the
    > foot. Perhaps in the first printing there was a "1" in that row, later
    > expunged. I have no idea what these publisher's markings imply, but it
    > might be interesting to discover whether in other copies those numbers are
    > the same.
    My copy does not indicate a date of printing other than the 1992 copyright notice.
    Indeed,  the last number in the number line on the verso of the title page reads
    "1", indicating that mine is a first printing. Publishers use this method because it
    is easier to erase something from a printing plate than to add or change.
    > My own copy is different, on page 210.
    > In mine, the author states, after defining various eccentricities-
    > "N(phi) = ellipsoidal radius of curvature in the prime vertical".
    > In brackets that definition is followed by (in Herbert's notation)
    >  N(phi) = a / Sqrt(1- Sqr(e) * Sqr(sin(phi))), exactly the same as on page 206.
    > So this would seem now to be completely correct, in definition and
    > equation, and should give the right value for N(phi) to plug into the
    > equations on page 212-213.
    Good! This has been corrected.
    > So for those that have the same version of page 210 as I do, can we ignore
    > Herbert's advice as follows?
    > ===================
    > >Let's call it R(phi), in the following. So, we adopt
    > >
    > >    R(phi) = a * (1-Sqr(e)) / (1- Sqr(e) * Sqr(sin(phi))) ^ (3/2)
    > >
    > >Now, it turns out that R(phi) is never needed for the conversion between
    > >lat/lon
    > >and UTM. Whenever the supplement refers to N(phi) in chapter 4.233, equation
    > >4.22-9 is the correct one to use and page 210 is to be ignored, along with the
    > >explanation accompanying 4.22-9.
    Yes, but only if you get rid of R(phi1) in equation 4.233-8, as I suggested.
    Otherwise you need the formula for R(phi) for finding the meridianal curvature in
    the footpoint.
    > In my version of the book, there's no mention or definition of R(phi), or
    > of the radius of curvature IN the plane of the meridian, except for that
    > erroneous definition back on page 206  (eq. 4.22-9).
    > R appears without explanation, in eq 4.233-14, as R1 in the special case
    > for angle phi1 as-
    > R1 = a *  (1-Sqr(e)) / (1- Sqr(e) * Sqr(sin(phi1))) ^ (3/2),
    No, there is no explanation in the book, but that's what R1 is: the radius of
    curvature IN the plane of the meridian, at latitude phi1.
    > To sum up, if there are no other errors than those described by Herbert
    > Prinz, then it appears that I should be able to use the equations in my
    > copy of Seidelmann as they stand, taking N(phi) from either page 4.22-9 on
    > page 206 or from the identical equation on page 210. The only remaining
    > error is that definition of N(phi) on page 206. Does that make sense to
    > Herbert?
    Yes, it does.
    As long as we are at it, would you please check the following items  in your copy?
    On p. 400, equation 7.3-4. The correct formula is
         sin(HP) = R_Earth  /  r_Moon
    But in my copy the second member got turned around, yielding the reciprocal value.
    On p.401, in equation 7.3-10, the semidiamer of the Moon is given as
         SD = arctan(R_Earth  /  r_Moon)
    but I believe this should be the arcsin, shouldn't it?
    I also cannot resist drawing your attention to the index as well as to p. 485, where
    one finds the term "analemmic curve". I consider this the most intriguing coinage in
    American technical literature of the 20th century. But this is another story (and
    one of my pet peeves).
    I am glad to hear from Paul Hirose that a new edition of the Supplement is underway
    and hope that this is not just a rumor. Even if nothing were to be changed, I am
    ready for a new copy as my current one is now at the point of physical
    disintegration. I find this book invaluable and have spent many hours on reading it
    sequentially. It is by far more than an "explanatory supplement" where one looks
    things up casually when the need arises; it is, in fact, a text book on positional
    astronomy, geodesy, time measurement and calenders (and history thereof!!) plus a
    compilation of relevant data (except that the book is ten years old now). If I could
    take only one astronomy book with me to the proverbial lonely island, this would be
    the one.
    Herbert Prinz

    Browse Files

    Drop Files


    What is NavList?

    Join NavList

    (please, no nicknames or handles)
    Do you want to receive all group messages by email?
    Yes No

    You can also join by posting. Your first on-topic post automatically makes you a member.

    Posting Code

    Enter the email address associated with your NavList messages. Your posting code will be emailed to you immediately.

    Email Settings

    Posting Code:

    Custom Index

    Start date: (yyyymm dd)
    End date: (yyyymm dd)

    Visit this site
    Visit this site
    Visit this site
    Visit this site
    Visit this site
    Visit this site