NavList:
A Community Devoted to the Preservation and Practice of Celestial Navigation and Other Methods of Traditional Wayfinding
From: Andrés Ruiz
Date: 2009 Jul 27, 14:14 +0200
Dave Walden wrote in [NavList 9215]:
......
Whoa! They should be the same! (Note the parallelism
in the equations. Same would be seen in the Great Circle Distance equation. All
the same triangle.)
......
The variables:
SR |
Identificaction |
GC |
B |
B |
B1 |
Dec |
Ho |
B2 |
LHA |
Z |
DL |
Hc |
Dec |
90-D |
Z |
LHA |
Ri |
The equations:
GC |
Cos D = sin B1 sin B2 + cos B1 cos B2 cos DL |
Cos Ri = (sin B2 - cos D sin B1)/(sin D cos B1) |
SR |
Sin Hc = sin B sin Dec + cos B cos Dec cos LHA |
Cos Z = (sin Dec - sin Hc sin B )/(cos Hc cos B) |
Body identificaction |
Sin Dec = Sin B Sin Ho + Cos B Cos Ho Cos Z |
Cos LHA = (sin Ho - sin DEC sin B )/(cos DEC cos B) |
For other treatment of this
equations and LD distance see my paper “Vector equation of the circle of
equal altitude” available at my Web page.
Andrés Ruiz
Navigational Algorithms
http://sites.google.com/site/navigationalalgorithms/
--~--~---------~--~----~------------~-------~--~----~
NavList message boards: www.fer3.com/arc
Or post by email to: NavList@fer3.com
To unsubscribe, email NavList-unsubscribe@fer3.com
-~----------~----~----~----~------~----~------~--~---