# NavList:

## A Community Devoted to the Preservation and Practice of Celestial Navigation and Other Methods of Traditional Wayfinding

Message:αβγ
Message:abc
 Add Images & Files Posting Code: Name: Email:
Re: Angular Distance Between Stars By Camera and Sextant
From: Marcel Tschudin
Date: 2012 Sep 18, 12:02 +0300
In the mean time I had a look at possible reasons for the 0.3 moa difference between the calculated distance as resulting from Paul's calculation and the one resulting from the USNO data, noticing the following:

(1) There are some Hc and Zn values which are rounded different to 1/10 of a moa. This means that there are somewhere differences of +/-0.05 moa or +/-3 sec of arc. For navigational purpose this is negligible, but for spherical astronomy calculations it is a lot. Where could this difference have its origin?

(2) The refraction values provided in the USNO almanac are slightly larger than those Paul used. This seems to confirm that the refraction values in the USNO table relate to observed altitudes; those are the refractions to deduct from the sextant measurement to obtain the Hc value resulting from measurements. The refraction values in the USNO table can therefore not be used for calculating the observed star distance from the Hc values, they have to be calculated separately.

(3) Calculating the distance D between the local coordinates of e.g. Alioth and Alkaid using Paul's el and az values to 1/10th of moa  results in D=627.6 moa. Using his el and az values to 1/100th of a moa results in D=627.2 moa. With the full accuracy program values Paul obtained D=627.3 moa.

This example suggests that - independent of the accuracy in measured pixels - the calibration accuracy cannot noticeably be improved by using the distance of two star positions with the local coordinates calculated to 1/10th of a moa (difference in this example is 0.3 moa compared to +/-0.5 moa accuracy from HS observations). Improving the present calibration accuracy would require at least accurate J2000 star positions and a program for converting them to local coordinates to at least 1/100th of a moa (like Paul shows in his output).

However, for those not fortunate to live close to the sea and looking for a mean to calibrate their camera to somewhere around +/- 0.5 moa, measuring star distances and comparing them with the USNO almanac data, corrected with Saemundsson's refraction, may be an option.

Marcel

P.S: Thank you, Paul, for the link.

On Tue, Sep 18, 2012 at 6:49 AM, Paul Hirose wrote:
I'm surprised you could read the message. In the copy of my own message received by email, the link to the file gives a "page not found" error message.

Browse Files

Drop Files

### Join NavList

 Name: (please, no nicknames or handles) Email:
 Do you want to receive all group messages by email? Yes No
You can also join by posting. Your first on-topic post automatically makes you a member.

### Posting Code

Enter the email address associated with your NavList messages. Your posting code will be emailed to you immediately.
 Email:

### Email Settings

 Posting Code:

### Custom Index

 Subject: Author: Start date: (yyyymm dd) End date: (yyyymm dd)