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Introduction

When navigating at sea the coast is friend as well as foe: foe 
by danger of running aground, but friend by the possibility 
of position nding using visible land ar s  such as light-
houses or church towers.

One of the instruments used in coastal navigation is the sta-
tion pointer, or 3-way protractor. This is a goniometer with 
three long arms for setting out on a sea chart two adjacent 
horizontal angles observed between three landmarks.

The Station Pointer

The station pointer depicted in Figures 1 to 4, was produced 
by . ughes  on  in the second uarter of the th cen-
tury. Each of the three protractor arms consists of two parts 
so that the containing box (Figure 1) can have a manageable 
size. The 0º - 360º scale on the silver-plated ring is divided in 
full degrees (Figure 3), but more expensive models do exist 
with micrometers and magnifying glasses to allow divisions 
up to one minute of arc.

The print on the box (Figure ) reveals that this instrument 
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Figure 1. Station Pointer in its Box
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was part of the navigation e uipment of the  meter utch 
Indies Navy gunboat Soemba, of the Flores class. The So-
emba was commissioned in 1 6 and saw active service dur-
ing World War II under allied command, in the East Indies 
and later in the Mediterranean. The Soemba was decommis-
sioned in 1  1 .

Principle of the station pointer

Any coastline of interest will have some visible landmarks, 
clearly indicated on large-scale sea charts to allow position 

nding by observation from sea. The simplest method is by 
taking bearings on two landmarks through the pelorus of the 
bridge compass so that the position can be constructed on 
the sea chart by drawing the intersection of 
the bearing lines. The station pointer method 
requires the observer O to take horizontal 
sextant angles between three landmarks A, 

, and : the result is in the measured angles 
AO  and O .

Figure 4 shows an example on the sea chart 
of uget ound on the west coast of the A, 
just north of Seattle. The landmarks are:

A  oint efferson,   oint Monroe,   
Skiff Point

The two measured angles AO  and O  are 
set up between the respective outer arms of 
the station pointer and the middle arm, which 
is connected to the ring, xed at the value of 
0º. The outer arms are then xated by their re-
spective clamping screws near the ring scale.

Now the bevelled sides of the arms form an 
analogon of the two measured triangles on 

the chart. Note that the bevelled “radial” 
sides must be used because only those line 
up to the centre of the ring scale. This radial 
is on opposite sides of the outer arms

The thus adjusted station pointer can be put 
on the chart, in such a way that all three 
bevelled sides of the instrument touch the 
respective landmarks A, , and  in that 
position the centre of the station pointer s 
ring (cross hair or notch) will represent the 
location of the observer O.

Use of the station pointer

This seemingly simple guideline described 
above is often used in documents about the 
station pointer, but the exact procedure to ac-
complish this is missing in most descriptions. 

Shifting and rotating the station pointer un-
til all arms touch their respective landmarks A, , and , 
seems a random trial and error exercise.

The best method to reach a solution in a systematic way is 
the following:

1. Position the station pointer anywhere on the chart 
with the lower arm touching point .

. otate the station pointer around  until the middle 
arm touches B; now the lower triangle has the cor-
rect angle BO  at O.

3. Shift the station pointer in such a way that 
the lower arm keeps touching  and the mid-
dle arm keeps touching B, until the upper arm 

Figure 2. Station Pointer on its Box

Figure 3. Station Pointer’s Scale
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of Position, along the circumscribing circle (see the various 
light green triangles in Fig. 5). The centre of this Line of 
Position circle is determined by M in the rectangular triangle 
AML.

The second Line of Position is determined likewise by tri-
angle OB . The two points of intersection between the two 
Lines of Position represent the known point B and the re-
quired Observer s position O respectively.

Accuracy of the station pointer

The accuracy of the angles to be set out on the chart depends 
on many factors. In the rst place the scale of the chart is 
very in uential; large-scale charts for coastal navigation 
will provide the best precision in locating the ship s posi-
tion. Then we have to consider the precision of the read-
ings from the sextant and the setting of the position pointer. 
Although an instrument s circle scale may be divided up to 
arc-minutes or even less, the nal accuracy of the pointer 
arms on the chart may come out no better than ¼ degree.  

There are other factors that may in uence the accuracy. 
The handling of the sextant during measurements may have 

Figure 4. Using the station pointer

touches its landmark A; now the upper tri-
angle also has the correct angle AOB at O. 

The curve followed by the station pointer s centre in step 3, 
is actually the arc of a circle through B, , and O. This non-
linear movement can be assisted by guiding the lower and 
middle arm over pins or thumb tacks in the chart at  and B 
respectively.

The Line of Position formed by equal top angles

From basic trigonometry we know that the radius of the cir-
cle circumscribing a triangle OAB can be calculated from 
the rectangular triangle AML (ML being the perpendicular 
bisector of AB):

½ AB
sin( AOB)AOBR

�
   (1)

Therefore, the circumscribed circle only depends on the 
length of base AB and the top angle AOB, but not on the 
top s position (the top angle AOB is named  in Figure 5). 
The top s position can be anywhere on the so-called Line 
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some in uence; time differences between measuring the 
angles AOB and BO  from a moving ship will decrease ac-
curacy (correction is possible, but complicated). Even a de-
viation from the horizontal plane of the sextant during mea-
surements will result theoretically in a too small horizontal 
angle, although this effect will be negligible for observed 
points that are neither too close nor too high.

A substantial contribution to loss of accuracy may be caused 
by ill-chosen positions of the observation points A, B, and 

. Where the intersection of two lines of position (circles) 
approach the perpendicular, the accuracy will be optimal. 
Smaller intersecting angles will diminish the accuracy, and 
in the extreme case of coinciding circles (one circle through 
A, B, , and O, called the danger circle) there is no solution 
at all.
 
When the observation points A, B, and  can be chosen from 
a larger number, some base rules should be used, such as: 
use angles larger than 30 degrees, or choose the mid-point B 
closer to the observer than A and , see  and 3 .
A check on accuracy may be done by measuring a fourth 
observation point, to construct a third circle of position; the 

intersection of this additional one with the other two should 
not deviate too much from the Observer s position O as de-
termined earlier.

Alternatives of the Position Pointer

Drawing a schematic station pointer: if an actual station 
pointer is not available, a construction of the station point-
er s arm settings can be drawn on a piece of transparent 
paper. Three lines, intersecting each other by the measured 
angles between A, B, and  respectively, are suf cient as 
this piece of paper can be manoeuvred around the chart like 
a real station pointer.

Graphical construction: the two Lines of Position (circles) 
may be constructed with ruler and compasses on the chart, 
directly or on a transparency to protect the chart. The lines 
AB and B  are drawn rst through A, B, and  respectively. 
Then a protractor is used to draw a line from A by 0º -  
away from AB; likewise a line from B by 0º -  away from 
BA. These two new lines intersect at the centre M of the 
Line of Position around triangle OAB; this circle can now 
be drawn with the compasses. Note that for checking pur-

Figure 5. Line of Position Circles



10  Journal of the Oughtred Society

poses the perpendicular bisector of AB with the compasses 
between A and B can be drawn, and should also intersect 
with the circle s centre M. 
The Line of Position circle around the triangle OB  can be 
drawn in the same manner, and the intersection between the 
two circles (not point B of course ) will be the Observer s 
position O.

In early times - before the 19th century - protractors did not 
yet exist, so angles had to be constructed on a chart by mov-
ing the required angles with a “parallel ruler” between the 
compass rose and the required position. As an alternative, 
angles could be constructed by means of “ hord” scales 
which were available already before the 1 th centuries on 
“plain scale” rulers, and later on Gunter rules too.

Numerical Solutions

The graphical constructions described above need to set out 
angles on the chart, but do not use numerical calculations. 
When calculations are introduced, there is no need to set out 
angles.

In the rectangular triangle ALM the lengths of the unknown 
sides AM and LM can be calculated from the side AL = 
½AB and the top angle :

AL
sin( )

AM
w

 and  
 AL

tan( )
LM

w
   

   ( )

If one of these sides, for example AM, is calculated then the 
circle s centre M can be constructed directly on the chart 
by circling the length AM from A until intersecting with the 
perpendicular bisector of AB. If LM is calculated then the 
circle s centre M can be constructed directly on the chart 
by setting off from L the length LM on the perpendicular 
bisector of AB.

These calculations can be done on an electronic calculator 
(today), or on a logarithmic slide rule (long ago), or even on 
a Gunter rule (a very long time ago). 
 
Not only the angle  but also a unit of length is needed for 
AL and the sides to be calculated; the most logical choice is 
to use the very scale of the map, so that with compasses or 
dividers a distance such as AL can be brought from the chart 
into the equation, in scaled miles or minutes of arc. 

Proportional dividers: even before the 1 th century, this 
computational problem could already be solved by means 
of the proportional dividers, without protractor or numeri-
cal calculations. The proportional dividers need to have sine 
and/or tangent scales to do this. 
 
The method is simple. With chart dividers (or compasses) 
the perpendicular bisector of AB is constructed as described 
above; then the distance AL = ½AB is taken between the 
points of the chart dividers, and the proportional dividers 
are extended so far that the scale points for TAN ( ) on each 
arm have a distance AL between them (using the chart divid-
ers that were just set to AL). 

In that position of the proportional dividers, the chart divid-
ers are now moved and extended until the points extend from 
the scale point TAN (90º) = 1 on one arm to the same scale 
point TAN (90º) = 1 on the other arm. The distance between 
the points of the chart dividers is now set to LM, and can 
be used to construct the circle s centre M by extending LM 
from L to M, along the perpendicular bisector of AB.

In fact two congruent equilateral triangles have been formed 
over the two tangent scales, representing the proportions:

tan ( ) : tan (45º) = AL : LM, see Figure 6

Note that the intermediate value of tan(30º) = 0.5  
in this example need not even be known to the user  

If the angle   45º then the method has to be adapted to use 

Figure 6. Using the proportional dividers
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the complementary angle of : 

tan (90º - ) : tan (45º) = LM : AL

The Resection Problem of Snellius

The use of the station pointer at sea has a striking resem-
blance with the resection problem in land surveying. The 
name “resection” is usually associated with the Dutch math-
ematician and scientist Willebrord Snel van Royen, best 
known as Snellius (15 0 -16 6) who designed and carried 
out the rst large-scale surveying project in the Netherlands, 
the triangulation from Alkmaar to Bergen 
op oom, see 4  and Figure . is pur-
pose was to determine the length of a part 
of the meridian through Alkmaar, in order 
to calculate accurately the circumference 
of the earth from this measured length and 
the difference in latitude of the arc s end-
points. This triangulation is described in 
his book “Eratosthenes Batavus” (161 ), 
in translation the Batavian Eratosthe-
nes comparing Snellius with the classical 
Greek mathematician, see 5  and Figure 
8.

Some of his observations had been per-
formed from the roof of his own house, 
which was not visible from prior triangu-
lation points: the oogland church tower, 
the Leiden ity all, and the Pieterskerk. 
Snellius solved that problem by measuring 
those points “backwards” from his roof, 
using the results to calculate the coordi-
nates of his house, the so-called “Snelli-
us-point”. This was the rst documented 
application of resection in the history of 
geodesy. 

Snellius however is best known for his law 
on the refraction of light rays (not pub-
lished in book or paper, but only written as 
manuscript).

Angle measurements in land surveying 
are possible with much greater precision 
than at sea, by using stationary theodolites. 
For example the Wild T  theodolite of the 
1930 s could already distinguish angles 
within a few seconds. Graphical construc-
tions and station pointers used at sea could 
not compete with that precision, and were 
therefore never used in land surveying. In 
land surveying the solution of the Snel-
lius resection problem is mostly done by 
calculating schemes on ll-in forms, using 

National Grid rectangular coordinates (in contrast with the 
sexagesimal angle coordinates used at sea).

Surveying handbooks give various solutions for the resec-
tion problem, for example the construction of assini (with 
the two circles as described before), or the ollins construc-
tion with only one circle, or the method of barycentric coor-
dinates (distances to the perpendiculars of a triangle). More 
than 500 solutions appear to exist for the resection problem.

On the Internet a striking animation can be found showing 
chosen (and variable) positions of the observation points A, 
B, and , against the calculated observer s position O, see 

Figure 7. Snellius’ Triangulation Net in the Netherlands
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6 . The accuracy of the determination of the Snellius point 
for a given con guration can be shown by a cloud of mea-
surement points, simulated with a precision of 0.00  grad 
(about 6½ seconds). A denser cloud indicates a higher ac-
curacy.

History of the Station Pointer

According to D. Baxandall , the station pointer was in-
vented by the English hydrographer, cartographer, entrepre-
neur, and inventor . uddart, F.R.S.,1 41-1816, known by, 
amongst other things, an extensive route description to the 
East Indies, (“The Oriental Navigator”, 1801), and by his 
charts of Saint George s hannel, the Tigris, and West-Su-
matra. In 1 91 he became Fellow of the Royal Society. The 
station pointer of uddart is only known from an article in 
Nicholson s ournal , 1804 8 .

Actually the English hydrographer Murdoch Mackenzie, 
F.R.S., 1 1 -1 91 (who had been appointed  Maritime Sur-
veyor in his Majesty s Service, and since 1 4 also Fellow 
of the Royal Society), described the station pointer much 
earlier, in 1 4. e became known by, amongst other things, 
his accurate sea charts of the Orkney islands in 1801. Mack-
enzie was the rst to publish a book speci cally address-
ing the science and techniques of Maritime Surveying; this 

Figure 8. Title page of Snellius’ book

book contained the description of the station pointer, see 9  
and Figure 9. aving published the station pointer almost 30 
years before uddart, Murdoch Mackenzie must be consid-
ered its inventor.

The station pointer was used in the rst place for accurately 
locating hydrographical data on sea charts, especially depth 
soundings. The angle measurements were not performed 
with sea sextants held horizontally, but with special-purpose 
“sounding sextants”. Some versions were able to x two ad-
jacent angles simultaneously, very important on board mov-
ing vessels (the double sounding sextant). 

Reading measured angles and adjusting the arms of the sta-
tion pointer accordingly, was a time-consuming and error-
prone activity. ombined instruments have been designed 
with the optical path of a double sounding sextant running 
along the arms of a protractor, see Mc ombie s “position 

nder” in Figure 10 from 10 . Also some regular (single) 
sextants are known to have been combined with a protractor, 
for example the English “re ecting protractor” by Douglas, 
or the Dutch “sextant-transporteur” by LaPorte.

Conclusion

The classic station pointer, originally designed for mari-
time surveying, is not an essential instrument for naviga-
tion. The limited accuracy, the laborious copying of angles 
from sextant to station pointer, and the space needed on the 
chart table, are obstacles to its use. Still one can nd station 
pointers for sale, for example the 30 dollar plastic instrument 
by Starpath 11 , or more expensive ones, like a 450 dollar 

     Figure 9. Mackenzie on the StationPointer
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metal instrument by Celestaire 1 . 

owever, the geometric background and the close relation 
to the resection point in land surveying makes the station 
pointer an interesting instrument in historical context.
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Notes

1. Adapted and translated into English by O. E. van Poelje 
from his original Dutch article in the Dutch RING s 
MIR 60, 01 , p 1   18.

. enry ughes started his own company in 1838 in Lon-
don as a maker of chronometers and scienti c instru-
ments.

Since 1859 the company, then “ . ughes  Son”,  had the 
of ce located at 59 Fenchurch Street, London, where they 
stayed until 1941. The rm was incorporated as “ enry 

ughes  Sons Ltd” in 1903. Since the 19 0s the company 
also sold instruments under the brand name S N, espe-
cially sextants. 
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